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Abstract
We consider various random models (directed polymer, random ferromagnets,
spin glasses) in their disorder-dominated phases, where the free-energy cost
F(L) of an excitation of length L presents fluctuations that grow as a power-
law �F(L) ∼ Lθ with the ‘droplet’ exponent θ . Within the droplet theory,
the energy and entropy of such excitations present fluctuations that grow as
�E(L) ∼ �S(L) ∼ Lds/2 where ds is the dimension of the surface of
the excitation. These systems usually present a positive ‘chaos’ exponent
ζ = ds/2 − θ > 0, meaning that the free-energy fluctuation of order Lθ is a
near cancellation of much bigger energy and entropy fluctuations of order Lds/2.
Within the standard droplet theory, the dynamics is characterized by a barrier
exponent ψ satisfying the bounds θ � ψ � d−1. In this paper, we argue that a
natural value for this barrier exponent is ψ = ds/2: (i) for the directed polymer
where ds = 1, this corresponds to ψ = 1/2 in all dimensions; (ii) for disordered
ferromagnets where ds = d−1, this corresponds to ψ = (d−1)/2; (iii) for spin
glasses where interfaces have a non-trivial dimension ds known numerically,
our conjecture ψ = ds/2 gives numerical predictions in d = 2 and d = 3.
We compare these values with the available numerical results for each case,
in particular with the measure ψ � 0.49 of Kolton–Rosso–Giamarchi (Kolton
et al 2005 Phys. Rev. Lett. 95 180604) for the non-equilibrium dynamics of a
directed elastic string.

PACS numbers: 05.70.Ln, 75.10.Nr, 05.40.−a

1. Introduction

The non-equilibrium dynamics of disordered systems display a lot of striking properties such
as ageing, rejuvenation, memory that have been studied both experimentally and theoretically
(see [1] and references therein). There is now a growing consensus that the understanding of

1751-8113/08/115002+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/11/115002
http://stacks.iop.org/JPhysA/41/115002


J. Phys. A: Math. Theor. 41 (2008) 115002 C Monthus and T Garel

these effects in finite-dimensional random systems requires the introduction of some coherence
length LT (t), with the following meaning. If the thermal dynamics at temperature T starts
at t = 0 from a random initial condition, the coherence length LT (t) associated with time t
separates the smaller lengths l < LT (t) which are quasi-equilibrated from the bigger lengths
l > LT (t) which are completely out of equilibrium. The two-time ageing properties and the
rejuvenation and memory effects for more complicated temperature-cycle experiments can be
then understood in terms of this coherence length LT (t) [1]. However, what has remained
very controversial over the years is whether the coherence length LT (t) grows algebraically
or logarithmically with time or equivalently whether there exists a positive barrier exponent
ψ as we now recall.

1.1. Logarithmic dynamics with some barrier exponent ψ > 0

The activated nature of the non-equilibrium dynamics is natural within the droplet scaling
theory proposed both for spin glasses [2–4] and for the directed polymer in a random medium
[5] (see section 2 for more details). Barriers are then expected to grow as a power-law at large
scale

B(L) ∼ Lψ (1)

where the exponent ψ > 0 is constant in the whole low-temperature phase T < Tc and is a
property of the large-scale zero-temperature fixed point. The typical time ttyp(L) associated
with scale L grows as an exponential

ln ttyp(L) ∼ B(L) ∼ Lψ. (2)

As a consequence, the non-equilibrium dynamics starting at time t = 0 is expected to involve
only logarithmic functions of time via the characteristic length-scale L(t) associated with
time t

L(t) ∼ (ln t)
1
ψ . (3)

A simple one-particle one-dimensional disordered model where this type of activated
dynamics occurs is the Sinai model [6] where one particle diffuses in a random Brownian
potential of exponent ψ = 1/2: the diffusion is then logarithmic with L(t) ∼ (ln t)2. One-
time and two-time properties of the non-equilibrium dynamics can be computed at large time
via a strong-disorder renormalization procedure that yields asymptotic exact results at large
times [7].

1.2. Algebraic dynamics with some dynamical exponent z

In the alternative scenario of ‘algebraic’ dynamics, barriers grow at most logarithmically with
L, i.e. the exponent ψ of equation (1) vanishes ψ = 0. Time scales and length scales are then
related by some dynamical exponent z

ttyp(L) ∼ Lz (4)

L(t) ∼ t
1
z (5)

instead of the logarithmic relations of equations (2) and (3). As a consequence, the ageing
properties of the non-equilibrium dynamics involve ratios of times (instead of ratios of
logarithms of the times).

A simple one-particle one-dimensional disordered model where this type of algebraic
ageing occurs is the Bouchaud trap model [8] (see [9] for the mean-field version).
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1.3. Debate on the phase-space structure at large scales

This question on the value of the barrier exponent ψ amounts more generally to understand the
phase-space structure of polymers or interfaces in random media. Within the droplet theory
[2, 3, 5] (see section 2), static properties are governed by low-energy excitations characterized
by the ‘droplet’ exponent θ and by the dimensionality ds of the surface of the excitations,
whereas the dynamics involves a priori another exponent ψ satisfying the bounds θ � ψ �
d − 1 [3–5]. Whereas the exponents θ and ds for the statics are known either exactly or
numerically in various models, the numerical measure of the barrier exponent ψ turns out
to be much more difficult from the point of view of computational complexity [10]. As a
consequence, the value of ψ has remain very uncertain even numerically in many random
models. The aim of this paper is to explain that the value ψ = ds/2 for the barrier exponent
is very natural for disordered models that have a positive chaos exponent ζ = ds/2 − θ > 0
and to compare with available numerical data.

1.4. Organization of the paper

In section 2, we recall the essential properties of the droplet scaling theory and present our
general arguments for the conjecture ψ = ds/2. We then discuss this conjecture with a
comparison to existing numerical results for the following models: directed polymers in
random media (section 3), disordered ferromagnets (section 4) and spin glasses (section 5).
Section 6 contains our conclusions.

2. Arguments in favor of the value ψ = ds/2 for the barrier exponent

In this section, before explaining the conjecture ψ = ds/2 for the barrier exponent, we need
to recall the main statements of the droplet scaling theory proposed both for spin glasses [2–4]
and for the directed polymer in a random medium [5].

2.1. Reminder on equilibrium properties within the droplet theory

2.1.1. Statistics of excitations above the ground state. At very low temperature T → 0, all
observables are governed by the statistics of low-energy excitations above the ground state.
An excitation of large length l costs a random energy

Eexc(l, T = 0) ∼ lθu (6)

where θ is the so-called droplet exponent [2–5], and where u is a positive random variable
distributed with some law Q0(u) having some finite density at the origin Q0(u = 0) > 0.
A low-temperature disorder-dominated phase exists whenever the droplet exponent θ is
positive θ > 0.

From equation (6), the probability distribution of large excitations l � 1 reads within the
droplet theory

dlρexc(l) ∼ dl

l
e−βEexc(l,T =0) ∼ dl

l
e−βlθ u (7)

where the factor dl/ l comes from the notion of independent excitations [3]. In particular, its
average over the disorder follows the power law

dlρexc(l) ∼
∫ +∞

0
duQ0(u)

dl

l
e−βlθ u = T Q(0)

dl

l1+θ
. (8)
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Since correlation functions at large distance are directly related to the probability of large
excitations, the low-temperature phase is very non-trivial from the point of view of correlations
lengths: the typical exponential decay of equation (7) indicates a finite typical correlation
length ξtyp(T ), whereas the averaged power-law behavior of equation (8) means that the
averaged correlation length ξav(T ) is actually infinite in the whole low-temperature phase
ξav(0 < T � Tc) = ∞.

2.1.2. Low-temperature phase governed by a zero-temperature fixed point. According
to the droplet theory, the whole low-temperature phase 0 < T < Tc is governed by a
zero-temperature fixed point. However, many subtleties arise because the temperature is
actually ‘dangerously irrelevant’. The main conclusions of the droplet analysis [3, 5] can
be summarized as follows. The scaling of equation (6) governs the free energy cost of an
excitation of length l, provided one introduces the typical correlation length ξtyp(T ) to rescale
the length l

Fexc(l, 0 < T < Tc) =
(

l

ξtyp(T )

)θ

u. (9)

Here as before, u denotes a positive random variable distributed with some law Q(u) having
some finite density at the origin Q(u = 0) > 0. But this droplet free energy turns out to
be a near cancellation of much larger energy and entropy contributions that scale for large l
as [3, 5]

Eexc(l, 0 < T < Tc) ∼ σ(T )l
ds
2 w + e1(T )lθ

T Sexc(l, 0 < T < Tc) ∼ σ(T )l
ds
2 w + · · · (10)

where ds represents the dimension of the surface of the excitation. The random variable w

of order O(1) and of zero mean is expected to be Gaussian distributed. The argument is
that the energy and entropy are dominated by small-scale contributions of random sign [3, 5],
whereas the free energy is optimized on the coarse-grained scale ξtyp(T ). A very important
consequence of the difference in scaling of the free-energy fluctuation of equation (9) and of
the energy–entropy fluctuations of equation (10) is the presence of disorder and temperature
chaos in the whole low-temperature phase with the so-called chaos exponent [3, 5, 11]:

ζ = ds

2
− θ > 0. (11)

Note that, numerically, temperature chaos is usually harder to observe than disorder chaos (see
[12, 13] and references therein).

For numerical simulations, it is important to stress that the term of order
lds/2 in equation (10) is the leading term for large l, but that there exists a subleading term of
order lθ to recover the free-energy fluctuations of equation (9). And since the amplitude σ(T )

of the leading term vanishes in the limit of T = 0 (as σ(T ) ∝ T ×T 1/2 = T 3/2 [12]), whereas
the amplitude e1(T ) of the subleading term in the energy remains finite e1(T = 0) > 0
(equation (6)), one needs to simulate sufficiently large excitations to reach the size l where the
leading term of equation (10) becomes much bigger than the subleading term:

σ(T )l
ds
2 � e1(T )lθ . (12)

2.2. Reminder on the non-equilibrium dynamical properties within the droplet theory

Within the standard droplet theory [2–4], the non-equilibrium dynamics is governed by large-
scale barriers B(L) ∼ Lψ where the barrier exponent ψ satisfies the bounds

θ � ψ � d − 1. (13)
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The lower bound comes from the fact that the barrier B(L) to create a droplet excitation of
size L cannot be less than the free-energy cost of the droplet (equation (9)). The upper bound
comes from the expectation that the barrier cannot have a greater exponent than the barrier
Ld−1 needed to create a non-optimized excitation of surface Ld−1. In particular, whenever
there exists a low-temperature disorder-dominated phase with a positive droplet exponent
θ > 0, the barrier exponent is strictly positive ψ � θ > 0 and leads to some logarithmic
dynamics (see equation (3)). Since in this paper we focus on the value of the barrier exponent
ψ , we refer the reader to [3, 4, 14] for a detailed description of other properties of the droplet
dynamics.

2.3. Arguments in favor of the value ψ = ds/2

From the point of view of the dynamical exponent ψ , there has been a long-standing difference
between

(i) the directed polymer model, where the assumption that the barrier exponent coincides
with the droplet exponent has been made from the very first article that has introduced
the model [15] (see section 3 for more details)

usual assumption for the directed polymer : ψ = θ; (14)

(ii) spin glasses, where it has been quickly clear that the barrier exponent in strictly bigger
than the droplet exponent (see section 5 for more details), because they are distinct below
the lower critical dimension. In dimension d = 1, the exact solution [2] yields

1D spin glass : ψ = 0 > θ = −1 (15)

and in dimension d = 2 these two exponents do not have the same sign

2D spin glass : ψ > 0 > θ. (16)

The usual explanation of this difference between the two models (i) and (ii) is that the
directed polymer case would be much more ‘simple’ than the spin-glass case, that its phase
space would be characterized by a single exponent θ , whereas in spin glasses the barrier
scaling is not related to the scaling of the free-energy minima. In this paper, we propose
another scenario, based on the observation that in any disorder system presenting a positive
chaos exponent ζ = ds/2 − θ > 0 (and in particular for the directed polymer), the description
of the phase space requires at least two exponents which are the droplet exponent θ for free-
energy fluctuations (equation (9)) and the exponent ds/2 that governs energy and entropy
fluctuations (equation (10)). The assumption of equation (14) is then equivalent to the very
strong requirement that the global free-energy optimization of order Lθ that results from a
near cancellation of much bigger energy and entropy random contributions of order Lds/2 is
satisfied all along the dynamical trajectories. The alternative scenario that we propose in this
paper is that for any dynamics containing only local moves of the polymer or interface, the
barrier exponent ψ is equal to the energy–entropy fluctuation exponent ds/2 (equation (10))

ψ = ds

2
. (17)

The physical interpretation is that the equality ψ = θ would be possible only via a non-local
dynamics that would allow a global reorganization of the polymer or interface at each time step,
whereas any local dynamics will see barriers that are dominated by small-scale contributions
of random sign.

In the remaining sections, we discuss this conjecture for various disordered models and
compare with the available numerical results.
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3. Non-equilibrium dynamics of directed polymers in random media

3.1. Reminder on the statics

The directed polymer in a random medium (see [16] for a review) is a model where the various
statements of the droplet scaling theory have been successfully tested. The exponent θ of
equation (6) is exactly known in one dimension θ(d = 1) = 1/3 [17–19] and for the mean-
field version on the Cayley tree θ(d = ∞) = 0 [20]. In finite dimensions d = 2, 3, 4, 5, . . . ,

the exponent θ(d) has been numerically measured, with values of order θ(d = 2) = 0.244
and θ(d = 3) = 0.186 [21, 22]. The statistics of equation (8) for the low-energy excitations
as a function of their size l very well describes the numerical data in the regime 1 � l � L in
dimensions d = 1, 2, 3 [23]. Finally, the scaling of equation (10) for the energy and entropy
fluctuations have been numerically checked in various dimensions in [5, 24, 25]. Let us
stress again that the difference between free-energy fluctuations of equation (9) and energy
fluctuations of equation (10) can be seen only for sufficiently large scale L [5, 24, 25] (see the
discussion before equation (12)).

3.2. Discussion of the conjecture ψ = ds/2 = 1/2 for the barrier exponent

To the best of our knowledge, all papers discussing the non-equilibrium dynamics of the
directed polymer seem to have assumed the equality of equation (14) between the barrier
exponent ψ and the droplet exponent θ . This assumption was first made in the very first paper
[15] introducing the directed polymer model, i.e. before the droplet analysis of the model
[5]. More recently, many papers consider that the equality of equation (14) has been ‘proven’
in [26] up to possible logarithmic corrections. In our opinion, the arguments contained in
[26] are problematic since the authors of [26] seem to be unaware of the crucial difference
in scaling between free-energy fluctuations and energy fluctuations (equations (9) and (10)).
For instance, they state that the dynamics is controlled by ‘energy barriers’, which have the
‘same scaling as free-energy fluctuations’, because it is a ‘zero-temperature fixed point’, but as
recalled above, within the droplet theory, the properties of the ‘zero-temperature fixed point’
are instead the different scalings of equations (9) and (10).

We have explained above in section 2.3 our general arguments in favor of the value
ψ = ds/2. For the directed polymer of dimension ds = 1 in a random medium of dimension
1 + d, this corresponds to

ψDP = ds

2
= 1

2
. (18)

We now compare with the available numerical results.

3.3. Comparison with available numerical results on the non-equilibrium dynamics

Although ageing effects for the directed polymer have been fitted with algebraic time scalings
by various authors [27], the more recent work of Kolton, Rosso and Giamarchi [28] shows
that

(a) the growing length L(t) cannot be fitted by a power-law L(t) ∼ t1/z at large times,
although the short time relaxation could be fitted with some effective exponent z(T ) that
strongly depends on temperature. This could explain why the first numerical fits [27] see
apparent algebraic ageing forms.

(b) the growing length L(t) can be fitted with the logarithmic form L(t) ∼ (ln t)1/ψ at large
times, and the value of the barrier exponent ψ is asymptotically size and time independent
as it should.
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(c) the value of ψ measured in [28] is ψ � 0.49 in the last three decades. The interpretation
of the authors of [28] that believe in the identity ψ = θ = 1/3 is that barriers contain
strong logarithmic corrections B(L) ∼ L1/3(ln L)µ. Our interpretation is in contrast in
that the measured value ψ ∼ 1/2 is actually the correct one.

4. Non-equilibrium dynamics in disordered ferromagnets

4.1. Numerical results on coarsening in disordered ferromagnets

The non-equilibrium dynamics in pure ferromagnets in the low-temperature phase T < Tc

is well understood via the characterization of domain coarsening [29]. In the presence of
quenched disorder however, the large time behavior of the characteristic length-scale R(t) of
the coarsening process has remained controversial between logarithmic behavior [15, 30, 31]

R(t) ∼ (ln t)x (19)

with a universal exponent x discussed below and power-law growth [32]

R(t) ∼ t
1

z(T ,ε) (20)

with an exponent z(T , ε) that depends both on the temperature T and on the disorder
strength ε.

However, as stressed in the recent work [33], the numerical simulations of coarsening
in disordered ferromagnets do not really reach the large-scale large-time regime, since the
maximal size Rmax measured is sometimes only of order Rmax ∼ 7 in unit of lattice spacings
at the end of the simulation (see for instance figure 4(a) of [32] or figure 1 of [33]). As a
consequence, the available numerical simulations on coarsening with quenched disorder are
not very conclusive for the asymptotic regime of R(t).

4.2. Relation between the exponent x in d = 2 and the directed polymer barrier exponent ψDP

Since the directed polymer model discussed in the previous section has been precisely
introduced as a model of domain wall in two-dimensional disordered ferromagnet [15], one
expects some relation between the barrier exponent ψDP of the directed polymer in 1+1 and the
exponent x of equation (19) governing the domain growth in the two-dimensional disordered
ferromagnet. The first possibility would be simply [31].

xsimple = 1

ψDP
, (21)

meaning that the dynamics is governed by the barriers associated with the domain scale R(t).
However, Huse–Henley [15] have proposed another scenario leading to the higher value

xHH = (2 − ζ )

ψDP
(22)

where ζ = 2/3 is the roughness exponent of the directed polymer in 1 + 1. The argument
leading to the value of equation (22) can be summarized as follows [15, 31, 29]. The relevant
interfaces during the coarsening process are not directed polymers but curved polymers with a
typical curvature radius of order R(t) itself. It can be consider as directed up to the size l where
the roughness lζ is of the same order of the curvature l2/R(t) yielding l(t) ∼ (R(t))1/(2−ζ ).
The barriers associated with these directed parts scale as (l(t))ψDP ∼ (R(t))ψDP/(2−ζ ) leading
to equation (22).

Note that these arguments usually go along with the assumption ψDP = θDP = 1/3 (see
the previous section on the directed polymer) yielding the values xsimple = 3 and xHH = 4
[15, 31, 29]. With the value ψDP = 1/2 of our conjecture discussed in the previous section for
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the directed polymer, the values of the exponent x are respectively xsimple = 2 and xHH = 8/3.
In the following, we argue that within our analysis, it is the value xsimple = 2 which is natural
for disordered ferromagnets in d = 2.

4.3. Conjecture ψ = ds/2 = (d − 1)/2 for the barrier exponent

Within our analysis where the barrier exponent ψ is governed by the dimensionality ds of the
interface that determines the energy and entropy fluctuations (equation (10)), we expect that
in disordered ferromagnets where ds = d − 1 the barrier exponent is

ψ = ds

2
= d − 1

2
(23)

irrespectively of the directed or curved nature of the interface, since it is governed by small-
scale contributions. In particular, in domain coarsening, we expect the ‘simple’ relation that
generalizes equation (21)

x = 1

ψ
= 2

d − 1
. (24)

Again, as explained above, numerical data on coarsening with disorder do not allow a precise
measure of the exponent x because R(t) of equation (19) is never very large in simulations
(see [31] for a more detailed discussions of the results of various fits).

5. Non-equilibrium dynamics in spin glasses

Many numerical works have studied non-equilibrium properties in spin glasses. Here, again
there is a controversy between logarithmic dynamics (see for instance [34, 35]) and algebraic
dynamics (see for instance [36, 37]).

5.1. Discussion of the conjecture ψ = ds/2 for spin glasses in d = 2

In dimension d = 2, there is no spin-glass phase because the droplet exponent θ is negative
θ < 0 so that Tc = 0. Nevertheless, it is interesting to measure the values of the droplet
exponent θ and of the fractal dimension ds of the surface of excitations above the ground state.
Recent estimates are θ � −0.287(4) (see [38] and references therein) and ds � 1.274(2) (see
[39] and references therein). Note that it has been recently argued that these interfaces are
described by SLE evolutions implying some simple relation between θ and ds [40].

Using ds � 1.274 [39], the present conjecture ψ = ds/2 for the barrier exponent would
corresponds to a numerical value of order

2D spin glass : ψ = ds

2
� 0.637. (25)

This value is very close to the estimate ψ � 0.61 obtained via Monte Carlo simulations
[36]. On the other hand, Amoruso, Hartmann and Moore [41] have tried to measure the barrier
exponent ψ of the highest barrier of systems of sizes L � 40 yielding the numerical bounds
0.25 < ψ < 0.54. The uncertainty shows the difficulty of the numerical measure of ψ so that
their upper bound does not seem to us sharp enough to rule out the value of equation (25).

5.2. Discussion of the conjecture ψ = ds/2 for spin glasses in d = 3

In dimension d = 3, the droplet exponent θ is positive θ > 0 so there exists a spin-glass
phase with Tc > 0. Recent estimates for the droplet exponent θ are of order θ � 0.19(2) [42],
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θ � 0.27 [43], θ � 0.24(1) [44]. The fractal dimension ds of the surface of excitations above
the ground state is of order ds � 2.6 (see [45] and references therein). Using the latter, the
present conjecture ψ = ds/2 for the barrier exponent would correspond to a numerical value
of order

3D spin glass : ψ = ds

2
� 1.3. (26)

This has to be compared with the value ψ ∼ 1.0 estimated by Berthier and Bouchaud from
their ageing simulations [35]. Again, the precision of this numerical estimate does not seem
sufficient to rule out the value of equation (26). We refer the reader to [35] for the experimental
values of the exponent ψ reported in the literature that varies between 0.3 and 1.9 [35].

6. Conclusion

In this paper, we have proposed that, in disordered systems characterized by a positive chaos
exponent ζ = ds/2 − θ > 0, the large time dynamics is governed by the barrier exponent
ψ = ds/2. We have explained why this value ψ = ds/2 is natural within the droplet scaling
picture, where the exponent ds/2 governs the energy–entropy fluctuations (equation (10)) and
is greater than the droplet exponent θ of free-energy fluctuations (equation (9)). We have then
discussed our conjecture for the following models:

(i) for the directed polymer, where ds = 1, our conjecture gives ψ = 1/2 in all dimensions;
(ii) for disordered ferromagnets, where ds = d − 1, our conjecture corresponds to ψ =

(d − 1)/2;
(iii) for spin glasses where interfaces have a non-trivial fractal dimension ds known

numerically, our conjecture ψ = ds/2 gives numerical predictions in d = 2 and d = 3.

In each case, we have compared with the available numerical data on ψ , in particular with
the work of Kolton–Rosso–Giamarchi[28] who have measured the barrier exponent ψ � 0.49
for the non-equilibrium dynamics of a directed elastic string. For disorder spin models,
either disordered ferromagnets or spin glasses, the available numerical estimates of ψ are not
sufficiently precise to support or exclude our conjecture.

If the conjecture ψ = ds/2 is correct, this means that the numerical measure of this
barrier exponent in dynamical simulations requires to study samples of sizes L sufficiently
large, where in the corresponding statics the free-energy fluctuations and the energy–entropy
fluctuations have reached their asymptotic regimes of equations (10) and (9), i.e. one needs to
be in the regime of equation (12) for the statics. We hope that this explicit static criterion will
help to identify the regime where dynamic simulations are likely to measure the asymptotic
barrier exponent ψ relevant at large scales.
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